机器学习(ml)越来越多地用于通知高赌注决策。作为复杂的ML模型(例如,深神经网络)通常被认为是黑匣子,已经开发了丰富的程序,以阐明其内在的工作和他们预测来的方式,定义“可解释的AI”( xai)。显着性方法根据“重要性”的某种尺寸等级等级。由于特征重要性的正式定义是缺乏的,因此难以验证这些方法。已经证明,一些显着性方法可以突出显示与预测目标(抑制变量)没有统计关联的特征。为了避免由于这种行为而误解,我们提出了这种关联的实际存在作为特征重要性的必要条件和客观初步定义。我们仔细制作了一个地面真实的数据集,其中所有统计依赖性都是明确的和线性的,作为研究抑制变量问题的基准。我们评估了关于我们的客观定义的常见解释方法,包括LRP,DTD,Patternet,图案化,石灰,锚,Shap和基于置换的方法。我们表明,大多数这些方法无法区分此设置中的抑制器的重要功能。
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
Federated Deep Learning frameworks can be used strategically to monitor Land Use locally and infer environmental impacts globally. Distributed data from across the world would be needed to build a global model for Land Use classification. The need for a Federated approach in this application domain would be to avoid transfer of data from distributed locations and save network bandwidth to reduce communication cost. We use a Federated UNet model for Semantic Segmentation of satellite and street view images. The novelty of the proposed architecture is the integration of Knowledge Distillation to reduce communication cost and response time. The accuracy obtained was above 95% and we also brought in a significant model compression to over 17 times and 62 times for street View and satellite images respectively. Our proposed framework has the potential to be a game-changer in real-time tracking of climate change across the planet.
translated by 谷歌翻译
Focusing on the complicated pathological features, such as blurred boundaries, severe scale differences between symptoms, background noise interference, etc., in the task of retinal edema lesions joint segmentation from OCT images and enabling the segmentation results more reliable. In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network, which can provide accurate segmentation results with reliability assessment. Specifically, aiming at improving the model's ability to learn the complex pathological features of retinal edema lesions in OCT images, we develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module of our newly designed. Meanwhile, to make the segmentation results more reliable, a novel uncertainty segmentation head based on the subjective logical evidential theory is introduced to generate the final segmentation results with a corresponding overall uncertainty evaluation score map. We conduct comprehensive experiments on the public database of AI-Challenge 2018 for retinal edema lesions segmentation, and the results show that our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches. The code will be released on: https://github.com/LooKing9218/ReliableRESeg.
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
3D对象检测是自动驾驶的重要组成部分,深层神经网络(DNNS)已达到此任务的最新性能。但是,深层模型臭名昭著,因为将高置信度得分分配给分布(OOD)输入,即未从训练分布中得出的输入。检测OOD输入是具有挑战性的,对于模型的安全部署至关重要。已经针对分类任务进行了广泛研究OOD检测,但是它尚未对对象检测任务,特别是基于激光雷达的3D对象检测的注意力。在本文中,我们关注基于激光雷达的3D对象检测的OOD输入的检测。我们制定了OOD输入对于对象检测的含义,并提议适应几种OOD检测方法进行对象检测。我们通过提出的特征提取方法来实现这一目标。为了评估OOD检测方法,我们开发了一种简单但有效的技术,用于为给定的对象检测模型生成OOD对象​​。我们基于KITTI数据集的评估表明,不同的OOD检测方法具有检测特定OOD对象​​的偏差。它强调了联合OOD检测方法的重要性以及在这个方向上进行更多研究。
translated by 谷歌翻译
Localizing anatomical landmarks are important tasks in medical image analysis. However, the landmarks to be localized often lack prominent visual features. Their locations are elusive and easily confused with the background, and thus precise localization highly depends on the context formed by their surrounding areas. In addition, the required precision is usually higher than segmentation and object detection tasks. Therefore, localization has its unique challenges different from segmentation or detection. In this paper, we propose a zoom-in attentive network (ZIAN) for anatomical landmark localization in ocular images. First, a coarse-to-fine, or "zoom-in" strategy is utilized to learn the contextualized features in different scales. Then, an attentive fusion module is adopted to aggregate multi-scale features, which consists of 1) a co-attention network with a multiple regions-of-interest (ROIs) scheme that learns complementary features from the multiple ROIs, 2) an attention-based fusion module which integrates the multi-ROIs features and non-ROI features. We evaluated ZIAN on two open challenge tasks, i.e., the fovea localization in fundus images and scleral spur localization in AS-OCT images. Experiments show that ZIAN achieves promising performances and outperforms state-of-the-art localization methods. The source code and trained models of ZIAN are available at https://github.com/leixiaofeng-astar/OMIA9-ZIAN.
translated by 谷歌翻译
分布式机器学习实现可扩展性和计算卸载,但需要大量的通信。因此,分布式学习设置中的沟通效率是一个重要的考虑因素,尤其是当通信是无线且采用电池驱动设备时。在本文中,我们开发了一种基于审查的重球(CHB)方法,用于在服务器工作者体系结构中分布式学习。除非其本地梯度与先前传播的梯度完全不同,否则每个工人的自我审查员。 HB学习问题的显着实际优势是众所周知的,但是尚未解决降低通信的问题。 CHB充分利用HB平滑来消除报告的微小变化,并证明达到了与经典HB方法相当的线性收敛速率,以平滑和强烈凸出目标函数。 CHB的收敛保证在理论上是合理的,对于凸和非凸案。此外,我们证明,在某些情况下,至少可以消除所有通信的一半,而不会对收敛率产生任何影响。广泛的数值结果验证了CHB在合成和真实数据集(凸,非凸和非不同情况)上的通信效率。鉴于目标准确性,与现有算法相比,CHB可以显着减少通信数量,从而实现相同的精度而不减慢优化过程。
translated by 谷歌翻译
显示用于误差校正的小型神经网络(NNS)可改善经典通道代码并解决通道模型更改。我们通过多次使用相同的NN使用相同的NN扩展了任何此类结构的代码维度,这些NN与外部经典代码串行串联。我们设计具有相同网络参数的NN,其中每个REED - Solomon CodeWord符号都是对其他NN的输入。与小型神经代码相比,增加了加斯噪声通道的块误差概率的显着改善,以及通道模型变化的稳健性。
translated by 谷歌翻译
当使用任意异质数据流提供时,我们如何收集最有用的标签来学习模型选择策略?在本文中,我们将此任务制定为一个在线上下文的活动模型选择问题,在每个回合中,学习者在上下文中都会收到一个未标记的数据点以及上下文。目的是在任何给定上下文中输出最佳模型,而不会获得过多的标签。特别是,我们专注于选择预训练的分类器的任务,并提出一种上下文活动模型选择算法(CAM),该算法依赖于在给定策略类别上定义的新型不确定性采样查询标准用于自适应模型选择。与先前的ART相比,我们的算法不假定全球最佳模型。我们提供严格的理论分析,以实现对抗和随机设置下的遗憾和查询复杂性。我们对几个基准分类数据集的实验证明了该算法在遗憾和查询复杂性方面的有效性。值得注意的是,与CIFAR10上最佳的在线型号选择基线相比,CAMS的标签成本少于标签成本的10%。
translated by 谷歌翻译